Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infect Dis Poverty ; 12(1): 18, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2255883

ABSTRACT

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and the Omicron variant presents a formidable challenge for control and prevention worldwide, especially for low- and middle-income countries (LMICs). Hence, taking Kazakhstan and Pakistan as examples, this study aims to explore COVID-19 transmission with the Omicron variant at different contact, quarantine and test rates. METHODS: A disease dynamic model was applied, the population was segmented, and three time stages for Omicron transmission were established: the initial outbreak, a period of stabilization, and a second outbreak. The impact of population contact, quarantine and testing on the disease are analyzed in five scenarios to analysis their impacts on the disease. Four statistical metrics are employed to quantify the model's performance, including the correlation coefficient (CC), normalized absolute error, normalized root mean square error and distance between indices of simulation and observation (DISO). RESULTS: Our model has high performance in simulating COVID-19 transmission in Kazakhstan and Pakistan with high CC values greater than 0.9 and DISO values less than 0.5. Compared with the present measures (baseline), decreasing (increasing) the contact rates or increasing (decreasing) the quarantined rates can reduce (increase) the peak values of daily new cases and forward (delay) the peak value times (decreasing 842 and forward 2 days for Kazakhstan). The impact of the test rates on the disease are weak. When the start time of stage II is 6 days, the daily new cases are more than 8 and 5 times the rate for Kazakhstan and Pakistan, respectively (29,573 vs. 3259; 7398 vs. 1108). The impact of the start times of stage III on the disease are contradictory to those of stage II. CONCLUSIONS: For the two LMICs, Kazakhstan and Pakistan, stronger control and prevention measures can be more effective in combating COVID-19. Therefore, to reduce Omicron transmission, strict management of population movement should be employed. Moreover, the timely application of these strategies also plays a key role in disease control.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Kazakhstan/epidemiology , Pakistan/epidemiology
2.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1166376

ABSTRACT

Here, we report the coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate obtained from a nasopharyngeal swab from the first patient with COVID-19 in Gilgit, Pakistan.

3.
Alexandria Engineering Journal ; 2021.
Article in English | ScienceDirect | ID: covidwho-1056143

ABSTRACT

The emergence of SARS-CoV-2 has been reported during December 2019, in the city of Wuhan, China. The transmission of this virus via human to human interaction has already been described. The novel virus has become pandemic and declared as a comprehensive emergency worldwide by World Health Organization due to its exponential spread within and outside China. There is a need of time to create a therapeutic agent and a vaccine to cure and control this lethal SARS-CoV-2. Conventionally, the vaccine development process is time taking, tiresome and requires more economical inputs with manpower. However, bioinformatics offers a key solution to compute the possibilities. The present study focuses on the utilization of bioinformatics platforms to forecast B and T cell epitopes that belong to SARS-CoV-2 spike glycoprotein. The protein is thought to have an involvement in triggering of momentous immune response. NCBI database was explored to collect the surface glycoprotein sequence and was analyzed to determine the immunogenic epitopes. This prediction analysis was carried out using IEDB web based server and the prediction of protein structure was done by homology modeling approach. This study resulted in prediction of 5 T cell and 13 B cell epitopes. Moreover, GPGPG linker was used to make these predicted epitopes a single peptide prior to further analysis. Afterwards, a 3D model of the final vaccine peptide was constructed, and the structure quality of the final construct was checked by Ramachandran Plot analysis and ProSA-web. Moreover, docking analysis highlighted three interactions of epitope against HLA-B7 including Lys 178, Gol 303 and Thr 31 residues. In conclusion, the predicted multi epitope peptide can be suggested as therapeutic or prophylactic candidate vaccine against SARS-CoV-2 after further confirmation by immunological assays.

4.
Infect Dis Poverty ; 9(1): 132, 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-768657

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) linked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause severe illness and life-threatening pneumonia in humans. The current COVID-19 pandemic demands an effective vaccine to acquire protection against the infection. Therefore, the present study was aimed to design a multiepitope-based subunit vaccine (MESV) against COVID-19. METHODS: Structural proteins (Surface glycoprotein, Envelope protein, and Membrane glycoprotein) of SARS-CoV-2 are responsible for its prime functions. Sequences of proteins were downloaded from GenBank and several immunoinformatics coupled with computational approaches were employed to forecast B- and T- cell epitopes from the SARS-CoV-2 highly antigenic structural proteins to design an effective MESV. RESULTS: Predicted epitopes suggested high antigenicity, conserveness, substantial interactions with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 88.40%. Taken together, 276 amino acids long MESV was designed by connecting 3 cytotoxic T lymphocytes (CTL), 6 helper T lymphocyte (HTL) and 4 B-cell epitopes with suitable adjuvant and linkers. The MESV construct was non-allergenic, stable, and highly antigenic. Molecular docking showed a stable and high binding affinity of MESV with human pathogenic toll-like receptors-3 (TLR3). Furthermore, in silico immune simulation revealed significant immunogenic response of MESV. Finally, MEV codons were optimized for its in silico cloning into the Escherichia coli K-12 system, to ensure its increased expression. CONCLUSION: The MESV developed in this study is capable of generating immune response against COVID-19. Therefore, if designed MESV further investigated experimentally, it would be an effective vaccine candidate against SARS-CoV-2 to control and prevent COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Immunogenicity, Vaccine/immunology , Molecular Docking Simulation , Pneumonia, Viral/immunology , SARS-CoV-2 , Sequence Analysis, Protein , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 3/chemistry , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccinology/methods , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL